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Strongly Rational Equilibrium in a Global Game with
Strategic Substitutes∗

Rodrigo Harrison † Pedro Jara-Moroni ‡

Abstract

The Global Games literature emerged as a device aimed at equilibrium selection
in games (Carlsson & Van Damme, 1993). Uniqueness selection of equilibrium has
been proved for a general setting, but restricted to models with supermodular payoffs
(Frankel, Morris & Pauzner, 2002). Moreover, this unique equilibrium profile is ob-
tained through iterated deletion of strictly dominated strategies and so it is the only
rationalizable outcome of the game. This implies, following Guesnerie (1992) that it
is as well a strongly rational equilibrium. For the case of Global Games with strategic
substitutes uniqueness of equilibrium has been proved in Harrison (2003), but iterative
elimination of strictly dominated strategies does not necessarily deliver this equilib-
rium. This allows for multiple rationalizable strategies, preventing to conclude about
strong rationality. Motivated by Guesnerie & Jara-Moroni (2011) in this work study a
simple global game with strategic substitutes and provide conditions for the existence
of a strongly rational equilibrium. This opens an unexplored research agenda on the
study of strongly rational equilibria in global games with strategic substitutes.

1 Introduction

Global Games are games of incomplete information, where the players’ payoffs depend on an
uncertain state that represents the fundamental of the modeled situation, from which each
player receives a (potentially different) signal with a small amount of noise. In these games,
the noise technology is common knowledge so each players’ signal generates beliefs about
fundamentals of the model and the other players’ beliefs (over fundamentals and beliefs of
their rivals and so on). Originally, global games where assessed as equilibrium selection
devices and, in time, they have become as well a useful methodology to simplify the analysis
of high-order beliefs in strategic settings. Our interest relates to their equilibrium selection
application.

Global Games where first introduced by Carlsson and van Damme (1993) as a means
to depart from the assumption that players are excessively rational and well-informed with
respect to the real-life situation in scrutiny. The idea behind this equilibrium selection
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approach is to examine the set of Nash equilibria of a game as a limit of equilibria of
payoff-perturbed games and observe any reduction in the set. For a given realization of the
state and its associated complete information game, the global game approach may allow
to select a unique equilibrium in this game, provided that there is a unique equilibrium in
the incomplete information game that results when the noise in the players’ observation is
sufficiently small.

Carlsson and van Damme (1993) show that for a general class of two-player, two-action
games, this limit comprises a single equilibrium profile. Moreover, the equilibrium profile is
obtained through iterated deletion of strictly dominated strategies. Roughly, the deletion
requires that, for each player and for each action of that player, there are certain extreme
values of the state, for which that action is strictly dominant. Even if these values carry
very little probability weight, the players can use signals close to these “dominance regions”
to rule out certain types of behavior of others. Hence, the iterative deletion proceeds.

These results have been extended by Frankel et al. (2003) to general finite games1 with
real valued set of actions. However, existing results in this literature are typically limited to
the case of strategic complementarities (and some other technical assumptions). This strong
result is very useful for many games such as bank run models, currency crises and some type
of herding behavior among others.2

Global games with strategic substitutes had not been as thoroughly studied as the case
of strategic complements. Uniqueness of equilibrium can not be obtained by simply passing
from the strategic complements model of Frankel et al. (2003) to the strategic substitutes
environment. The elimination of strictly dominated strategies does not provide a unique
outcome and so this technique may not be used to prove uniqueness of equilibrium. However,
adding a minimum of player heterogeneity Harrison (2003) showed that the equilibrium is
unique in a fairly general model with strategic substitutes. Still, this unique equilibrium
may not be the unique outcome of the iterative elimination of strictly dominated strategies
(Morris, 2009).

Obtaining a unique equilibrium as the result of the elimination of strictly dominated
strategies implies that this equilibrium is strongly rational. The concept of strongly rational
equilibrium was first stated by Guesnerie (1992) as a mean to provide an eductive foundation
for the rational expectations hypothesis. Following Guesnerie (1992, 2002) an equilibrium
is strongly rational, if it is the only rationalizable strategy profile of a game. The unique-
ness of the rationalizable solution depends solely on the fundamentals of the model. Strong
rationality has been studied in the context of complete information in terms of stability of
equilibria by Evans and Guesnerie (1993, 2003, 2005), Chamley (1999, 2004) and Desgranges
and Heinemann (2005). Morris and Shin (1998) incorporated rationalizability under incom-
plete information to the global games literature studing stability properties of equilibria
(Morris and Shin, 2003) As in global games, optimistic stability results, in terms of strong
rationality, have been obtained in the context of models that present strategic complements.
Namely, a unique equilibrium is strongly rational under strategic complementarity. Such
positive results are harder to obtain in environments with strategic substitutes. Guesnerie
and Jara-Moroni (2011) find conditions for strongly rational equilibrium in models with a

1Games with a finite number of players and for each player a finite number of available actions
2For a complete survey of the global games literature see Morris and Shin (2003)
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continuum of agents and strategic substitutes under complete information, that pertain to
uniqueness of fixed points of the second iterate of a best response mapping, while Morris and
Shin (2009) have attempted to link these results to global games with strategic substitutes
(see as well Morris and Shin, 2005).

Although we have a result of unique equilibrium in global games with strategic sub-
stitutes, the conditions under which this result is obtained are not enough to state strong
rationality of this equilibrium (Harrison, 2003). However, in the light of the results in Gues-
nerie and Jara-Moroni (2011), further requirements should allow to state that this unique
equilibrium is in fact strongly rational. In this work we study a simple global game with
strategic substitutes with heterogenous players that satisfies the conditions for uniqueness
of equilibrium of the theorem in Harrison (2003). We show that with sufficient players’ het-
erogeneity, indeed the unique equilibrium is as well strongly rational. This results solves a
puzzle in the global games literature and replicates the results found in Guesnerie and Jara-
Moroni (2011), regarding the passage from strategic complements to strategic substitutes.
It is indeed possible to obtain a unique strongly rational equilibrium under strategic substi-
tutes, but uniqueness of equilibrium is not sufficient as in the case of strategic complements.
Additional conditions must be required.

2 Example and Motivation

Consider the following two player parameterized normal form game. The utility functions
for player 1 and 2 are respectively:

u1(a, x) = a1(2 + x− (a1 + a2)) u2(a, x) = a2(2 + x− (a1 + a2))

with ai ∈ {0, 1} and x ∈ R being a parameter value. A matrix representation of this game
is shown in Figure 1.

Player 2
a2 = 1 a2 = 0

Player
1

a1 = 1 x, x 1 + x, 0
a1 = 0 0, 1 + x 0, 0

Figure 1: Matrix representation of the game.

It is easy to check that, depending on the value of x the game has different Nash equilibria
sets:

• If x > 0 there is a unique equilibrium profile, (1, 1), where for each player to choose
action 1 is strictly dominant.

• If x < −1 there is a unique equilibrium profile, (0, 0), where for each player to choose
action 0 is strictly dominant.

• if x ∈]− 1, 0[ there are two equilibria profiles: (0, 1) and (1, 0).
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We can schematically see this equilibrium behavior in Figure 2. Following the global
games literature, we will refer as dominance regions to the set of values of x where the
equilibrium is played with strictly dominant strategies.

Figure 2: Nash equilibria set depending on x.

Clearly there is no ambiguity in the behavior prediction for values of x in the dominance
regions of this game, but outside these regions we are unable to be equally precise. Carlsson
and van Damme (1993) would select an equilibrium by passing to an incomplete information
game where players are noisily informed about the value of x. If we have a unique equilibrium
in the incomplete information game, as the noise goes to zero, we could use this Bayesian
equilibrium strategy as a selecting device: for each x ∈] − 1, 0[ we could predict the action
played by each player by evaluating her equilibrium strategy in x.

The above example has the Global Games structure, but it is not possible to apply the
Carlsson and van Damme methodology because the symmetric equilibria that characterize
each dominance region ((0, 0) and (1, 1)), do not allow to start any process of iterated
elimination of strategies in the incomplete information game.3 Harrison (2003) made an
important observation, if some ex ante asymmetry (players heterogeneity) is introduced, it
is possible to create new (good) dominance regions. We can do this in our example by
introducing a “cost” ξ to player 2 in her utility function.

u1(a, x) = a1 (2 + x− (a1 + a2)) u2(a, x) = a2 (2 + x− ξ − (a1 + a2))

This defines a new game with different sets of equilibria. Figure 3 shows how these sets
depend on the value of x, and that new dominance regions are introduced.

Considering the incomplete information version of this game, we can now use these dom-
inance regions to start the process of iterated deletion of strictly dominated strategies to
select an equilibrium. Figure 4 characterizes the selected equilibrium, in which each player
uses a switching strategy from 0, to 1 with different cutoff values. Player 1 switches in
x = −1 and player 2 in x = ξ.

Harrison (2003) shows that uniqueness of equilibrium in the incomplete information game,
with sufficiently small noise, can be generalized to a class of global games with strategic

3Moreover, the Carlsson and van Damme result states that the selected equilibrium must be risk dominant,
but in our example neither of the two equilibria has this property.
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Figure 3: Nash equilibria sets with heterogenous players.

Figure 4: Unique equilibrium in the incomplete information game.

substitutes and many players. However, even though it is possible to do some strategy
deletion, under his set up it is not possible to obtain the unique equilibrium through iterated
elimination of strictly dominated strategies. This observation raises the natural question
about the existence of sufficient conditions allowing to obtain this profile as the unique
rationalizable outcome. We now present a simple three player global game with strategic
substitutes where such conditions exists.

3 A simple global game with strategic substitutes

Dominance regions play a central role in the process of equilibrium selection in global games.
In general, global games with strategic complements require the existence of these regions
(plus other assumptions related with continuity and monotonicity of the payoff function) in
order to do the equilibrium selection through iterative elimination of strategies. However,
following Harrison (2003), we realize that, in the strategic substitute case, in order to start
any process of elimination we need, additionally to the existence of dominance regions, some
player’ heterogeneity. Nevertheless, this condition is not sufficient for dominance solvability.
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3.1 The Complete Information Game

Consider a three player two action game with strategic substitutes characterized by the
following payoffs:4

ui(a, x) = ai

(
d

2
(3− a1 − a2 − a3) +mx− ci

)
for i ∈ {1, 2, 3} with ai ∈ {0, 1}, 0 < c1 < c2 < c3 and x ∈ R. Note that player i’s payoff
function is of the form

ui(a, x) = πi

(
ai,
∑
j 6=i

aj, x

)
Where πi : {0, 1}×{0, 1, 2}×R→ R is an auxiliary function that depends on other players’
actions through their sum (the number of players (other than i) that are choosing action 1).

Let us define ∆πi(n, x) = πi(1, n, x) − πi(0, n, x) as agent i’s payoff difference when she
is choosing action 1 rather than action 0. This is, the gain of player i of playing 1 instead of
0. Then

∆πi(n, x) =
d

2
(2− n) +mx− ci

Which can be written as

∆πi(n, x) = ∆π(n, x)− ci

where

∆π(n, x) :=
d

2
(2− n) +mx

Note that in this model

∆πi(n, x)−∆πi(n+ 1, x) = ∆π(n, x)− ci − (∆π(n+ 1, x)− ci)
= ∆π(n, x)−∆π(n+ 1, x)

= d

(1)

so the parameter d > 0 represents the degree of strategic substitution. If m > 0 this payoff
structure satisfies assumptions (A1) through (A5) of Harrison (2003).

Dominance regions
We can depict the dominance regions for each player as in Figure 5. The values ki and k̄i
are defined by

∆πi(0, ki) = 0 ∆πi
(
2, k̄i

)
= 0

and take the values

ki =
ci − d
m

k̄i =
ci
m

If x < ki, then player i has as dominant action ai = 0 and if x > k̄i the dominant action of
player i is ai = 1.

4This game is inspired in the game presented in Morris and Shin (2009).
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Figure 5: Dominance regions in three player two action global game with strategic substi-
tutes.

To provide the unique equilibrium of the incomplete information game (see section 3.2)
we need to define as well the value ki as:

∆πi(1, ki) = 0,

which takes the value

ki =
2ci − d

2m
.

3.2 Incomplete Information

Consider now the three player incomplete information game Γ(σ), consisting of the previous
payoff structure and where each player has some uncertainty about x. Instead of observing
the actual value of x, each player just observes a private signal xi, which contains diffuse
information about x, which is composed of the true value plus some noise:

xi = x+ σεi

where σ > 0 is a scale factor, x is drawn from an interval [X,X] with uniform density,
and εi ∼ U with support in

[
−1

2
, 1
2

]
. In this context signals xi belong to the set X(σ) =

[X − 1
2
σ,X + 1

2
σ].

If εi−εj is distributed according toH, then 1−F (xi|xj) = Pr(xi ≥ t|xj) may be calculated
using H as follows:

1− F (xi|xj) = Pr(xi ≥ t|xj)

= Pr
(
εi − εj ≥ (t−xj)

σ

)
= 1− Pr

(
εi − εj < (t−xj)

σ

)
= 1−H

(
(t−xj)
σ

)
.
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In this note we assume that H is the cdf function of the uniform distribution on [−1, 1].
This is

H(t) =


0 if t < −1
t+1
2

if −1 ≤ t ≤ 1

1 if t > 1

.

This general noise structure has been used in the global game literature, allowing the con-
ditional distribution of the opponents signal to be modeled in a simple way, i.e. given a
player’s own signal, the conditional distribution of an opponent’s signal xj admits a contin-
uous density fσ and a cdf Fσ with support in the interval [xi − σ, xi + σ]. Moreover this
literature establishes a significant result: when the prior is uniform, players’ posterior beliefs
about the difference between their own observation and other players’ observations are the
same,5 i.e. Fσ(xi | xj) = 1− Fσ(xj | xi).

In this context of incomplete information, a Bayesian pure strategy for a player i is a
function si : X(σ)→ {0, 1}. A pure strategy profile is denoted as s = (s1, s2, s3) and si ∈ Si,
the set of all functions from X(σ) to {0, 1}.

A switching strategy of player i is a Bayesian pure strategy si satisfying:

∃ y s.t. si(xi) =

{
0 if xi < y

1 if xi > y
(2)

Abusing notation, we write swi (·; y) to denote the switching strategy of player i with switching
threshold y.

Consider the following strategy profile s∗:

s∗1 = sw1 (·; k1) s∗2 = sw2 (·; k2) s∗3 = sw3
(
·; k̄3

)
Following Harrison (2003), if σ is sufficiently small the strategy profile s∗ is the unique

BNE of Γ(σ). This results does not tell anything about dominance solvability. The proof
Harrison (2003) utilizes a much stronger concept than iterative elimination of never best
responses. Moreover, it is possible to give examples where the unique equilibrium is not
strongly rational (Morris, 2009). In the next section we present a sufficient condition under
which s∗ is the only rationalizable outcome of Γ(σ).

4 Main Result

Proposition 1. If

c3 − c1 >
d

2

then ∃ σ(c1, c2, c3, d,m) > 0 such that ∀ σ < σ(c1, c2, c3, d,m), the set of rationalizable
strategy profiles is equal to BNE(Γ(σ)) = {s∗}.

Corollary 1. If c3 − c1 > d
2

and σ ∈ ]0, σ(c1, c2, c3, d,m) [, then the unique equilibrium of
Γ(σ) is Strongly Rational.

5This property holds approximately when x is not distributed with uniform density but σ is small, i.e.
F (xi | xj) ≈ 1− F (xj | xi) as σ goes to zero. See details in Lemma 4.1 Carlsson and van Damme (1993).
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The proposition states that for a given degree of substitution (d) if players are sufficiently
heterogenous c3−c1 > d

2
, or equivalently, if given players’ heterogeneity the degree of strategic

substitution is sufficiently small, then we get dominance solvability in Γ(σ).

Proof. We show that the process of elimination of strictly dominated strategies delivers the
unique equilibrium of the game. For this, we study a process of elimination of strategies
that, in each step, finds as unreasonable for players to use one of the two actions when their
signal is below or above certain values of their signals. These values are updated on each
step and so constitute two sequences for each player i. The sequence {x̄ti}

∞
t=0 that decreases

starting from k̄i, is such that at each step t player 3 has as dominant action the action 0
when her signal es above x̄t3 and below k̄3 and player i ∈ {1, 2} has as dominant action the
action 1 when her signal es above x̄ti. The sequence {xti}

∞
t=0 that increases starting from ki,

is such that at each step t player 1 has as dominant action the action 1 when her signal es
below xt1 and above k1 and player i ∈ {2, 3} has as dominant action the action 0 when her
signal es below xti. We show that under the assumptions of the Proposition, if σ is sufficiently
small, then these sequences cross a threshold equal to the switching point of the equilibrium
strategy of player 2, k2, thus fixing the only possible remaining strategies at the equilibrium
ones.

Since we have the dominance regions, we know that in any reasonable strategy player i
plays 0 when the signal is below ki and plays 1 if the signal is above k̄i. Thus, we start the
process of elimination of strategy profiles by considering, for each player, strategies of the
form:

si(xi) =

{
0 if xi < ki
1 if xi > k̄i

Between ki and k̄i the strategies may take any value. We make the analysis for values xti
under which the strategies become fixed on each step t, the analysis for values x̄ti over which
the strategies become fixed is analogous.

Set then x0i = ki. Since the game is of strategic substitutes, we can consider that players
observe a worst case scenario and update the values xti under which her strategies are fixed.
Since want to isolate the equilibrium strategy profile, we want to show that for player 1,
receiving a signal below xt1 makes her play 1 (since below k1 her strategy is already fixed at
0) and for players 2 and 3 receiving a signal below xti makes them play 0. If this is true for
the worst case scenario, it will be true for any scenario.

We now state the update equations and take limit when t → ∞ to find the limit of the
sequence xt. The worst case scenario equations for each player are:

0 = ∆π
(
0, xt1

)
F
(
xt−12 | xt1

)
F
(
xt−13 | xt1

)
+ ∆π

(
1, xt1

) [
F
(
xt−12 | xt1

) (
1− F

(
xt−13 | xt1

))
+

+
(
1− F

(
xt−12 | xt1

))
F
(
xt−13 | xt1

) ]
+ ∆π

(
2, xt1

) (
1− F

(
xt−12 | xt1

)) (
1− F

(
xt−13 | xt1

))
− c1;

(3)

0 = ∆π
(
0, xt2

) (
1− F

(
xt1 | xt2

))
+ ∆π

(
1, xt2

)
F
(
xt1 | xt2

)
− c2; (4)

0 = ∆π
(
0, xt3

) (
1− F

(
xt1 | xt3

))
+ ∆π

(
1, xt3

)
F
(
xt1 | xt3

)
− c3. (5)
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The right hand side of these equations is the expected gain of playing action 1 under worst
case scenarios (i.e. the lowest possible expected payoff), given that players know that the
strategies of their opponentes are fixed for signal values smaller than xti. The updating occurs
as follows: given the actual values of the sequences of players 2 and 3, we update the value
of the sequence of player 1. With his new value of player 1, we update the values of players
2 and 3. We now study the limits of the sequences xti.

Figure 6: The function Gxt1
(y). The vertical lines is xt1.

Note that for equations (4) and (5), the right hand sides as functions of each player’s sig-
nal, are equal to functionsGxt1

(y)−ci, whereGxt1
(y) := ∆π(0, y) (1− F (xt1 | y))+∆π(1, y)F (xt1 | y)

is depicted in Figure 6. When y is small, this function is equal to ∆π(1, y), then jumps con-
tinuously from ∆π(1, y) to ∆π(0, y) when y is in the σ neighborhood of xt1 and then it
becomes equal to ∆π(0, y). We may consider then the equation:

c = Gxt1
(y) .

Thus, given xt1 the solution xti of (4) and (5) (resp.) is either on the jump or beyond it (if
it was before we would get as solutions ki which can not be). If the solution is beyond the
jump, we have gone all the way to k̄i and thus the sequence would have collided with x̄ti and
we would have already isolated the equilibrium strategy for player i, so we assume that on
each t, the solution is in the jump and denote this solution as Y (xt1, c). Then

Y
(
xt1, c

)
=
dxt1 + 4cσ − 3dσ

d+ 4mσ

and so

xt2 = Y
(
xt1, c2

)
=
dxt1 + 4c2σ − 3dσ

d+ 4mσ
(6)

xt3 = Y
(
xt1, c3

)
=
dxt1 + 4c3σ − 3dσ

d+ 4mσ
. (7)
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The right hand side of equation (3) can also be decomposed as a function of y = xt1 minus c1.
The function is equal to ∆π(0, y) when y is small, then it jumps down (because σ is small)
continuously to ∆π(2, y) when near xt−12 and xt−13 and then it is equal to ∆π(2, y) when y is
large (see Figure 7). Equation (3) seeks a point such that this function is equal to c1.

Figure 7: The expected payoff for player 1. The vertical lines are xt2 and xt3.

We have then either one or three solutions. If there is only one solution, then it is either
k1 or k̄1. In the first case we must interpret that xt1 is ∞ and we get a similar conclusion
as above and the problem is solved. The second case is not possible under our assumptions
and if we have three solutions then xt1 is in the jump. In this case and since xt2 and xt3 are
both in the jump of their function, we must have that at the jump both F

(
xt−12 | xt1

)
and

F
(
xt−13 | xt1

)
are different from 0 and 1 and so we may replace them by the expression for

the increasing part of F . This gives:

xt1 =
d
(
xt−12 + xt−13 + 2σ

)
− 4cσ

2 (d− 2mσ)
. (8)

Now, plugging (6) and (7) into (8) we get xt1 as a function of xt−11 .

xt1 =
d
(
dxt−1

1 +4c2σ−3dσ
d+4mσ

+
dxt−1

1 +4c3σ−3dσ
d+4mσ

+ 2σ
)
− 4cσ

2 (d− 2mσ)

=
d2xt−11 + 2 (c3 − c1 + c2 − d) dσ + 4 (d− 2c1)mσ

2

(d− 2mσ) (d+ 4mσ)
.

Taking the limit when t→∞ we get

x∞1 =
d2x∞1 + 2 (c3 − c1 + c2 − d) dσ + 4 (d− 2c1)mσ

2

(d− 2mσ) (d+ 4mσ)
.

which gives

x∞1 =
(c3 − c1 + c2 − d) d+ 2 (d− 2c1)mσ

m (d− 4mσ)

11



We can now calculate x∞2 and x∞3 :

x∞2 = Y (x∞1 , c2)

x∞3 = Y (x∞1 , c3)

If we take σ → 0 we obtain that for i ∈ {1, 2, 3}, x∞i → c3−c1+c2−d
m

and if c3 − c1 > d
2
, we get

that

lim
σ→0

x∞2 =
c3 − c1 + c2 − d

m
>

2c2− d
2m

= k2.

So given (c1, c2, c3, d,m), there exists a threshold σb, that depends on (c1, c2, c3, d,m), such
that if σ is smaller than σb, then the sequence starting from below for player 2 converges to
the right of k2.

By the analogous exercise developed from above,6 we will get that given (c1, c2, c3, d,m),
there exists a threshold σa, that depends on (c1, c2, c3, d,m), such that if σ is smaller than
σa, then the sequence starting from above for player 2 converges to the left of k2.

So if σ is smaller than the threshold for Harrison’s uniqueness theorem and smaller than
min {σa, σa}, then the only strategy of player 2 isolated by the process of iterated elimination
is her unique equilibrium strategy, implying that for all three players the only strategies
isolated by the process of iterated elimination are the unique equilibrium strategies.

5 Conclusions

We have presented a simple model of a global game with strategic substitutes for which we
provide a sufficient condition for strong rationality of its unique equilibrium.

The condition states for this class of games that a sufficient negative correlation between
the degree of strategic substitution and heterogeneity among players, allows dominance solv-
ability. This can be achieved by a minimum players’ heterogeneity for a given degree of
strategic substitution or equivalently, by a maximal degree of strategic substitution for a
given players’ heterogeneity.

The intuition behind this condition for dominance solvability relies on the structure of
the process of iterated elimination of strictly dominated strategies. It is not only necessary
that the lower cost the player is, the more the incentive she has to have to pick the higher
action (a = 1), but also some additional requirements are needed such that allow players
to form beliefs consistent with a process of elimination that reaches to a single profile. In
this sense, it will be required that, for a lower cost player to pick the higher action, we
need the existence of a minimum of players’ heterogeneity or a maximum degree of strategic
substitution, because it is the only way that she can believe that the probabilities that
“higher cost (than her) players” are picking the higher action are very low.

Our result is consistent with Guesnerie and Jara-Moroni (2011) and Morris and Shin
(2009) and suggests that there may exist strongly rational equilibrium in a more general
set up of global games with strategic substitutes. From the condition on Proposition 1 and
equation (1) we infer that the result may be generalized for more general payoffs of the form

6The details are available from the authors upon request.
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∆π(n, x) − ci that satisfy assumptions (A1) to (A5) in Harrison (2003). This last remark
opens an unexplored research agenda on the study of strongly rational equilibria in global
games with strategic substitutes.
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