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Abstract

We show that in large games with a finite set of actions in which the payoff of a player depends only on
her own action and on an aggregate value that we call the state of the game, which is obtained from the
complete action profile, it is possible to define and characterize the sets of (Point-)Rationalizable States
in terms of pure and mixed strategies. We prove that the (Point-)Rationalizable States sets associated
to pure strategies are equal to the sets of (Point-)Rationalizable States associated to mixed strategies.
By example we show that, in general, the Point-Rationalizable States sets differ from the Rationalizable
States sets.

Keywords: Rationalizable Strategies, Large Games, Non-atomic Games, Expectational Coordination,
Strong Rationality.

JEL Classification: D84, C72, C62.

1 Introduction

Rationalizability has been used to give an eductive justification for the rational expectations hypothesis since
the works of Guesnerie (1992, 2002), where he defines a Strongly Rational Equilibrium as an equilibrium
that is the only “rationalizable outcome” of an economic model. The concept of rationalizability had been
defined and studied only in games with a finite number of players, while the applications to expectational
coordination where usually in the context of models with a continuum of agents.

Rationalizability is formally defined and characterized in Jara-Moroni (2012) for games with a continuum
of players, compact strategy sets and continuous payoff functions. The model of choice was the one presented
in Rath (1992), where the payoff of each player depends on her action and the average action of all the
players. The rationalizable sets are proved to be the result of the iterative elimination of non-best reply
average actions, extending the results of Bernheim (1984), Pearce (1984) and Tan and da Costa Werlang
(1988) to this class of large games.

The incipient literature on large games that builds over Rath’s and Schmeidler’s model usually assumes
that the set of actions in a large game is finite or the unit simplex in Rn (which can be interpreted as the
set of mixed strategies of a finite action game) (Rath, 1994, 1995, 1998; Carmona, 2004; Khan et al., 2006,
among others).

In this note we study rationalizability in the context of games with a continuum of players from the
point of view of finite action sets and the set of mixed strategies of a finite action set game. We claim that
regarding rationalizability it is superfluous for the modeler to consider mixed strategies since the expecta-
tional implications of this consideration are allready obtained with the (slightly) less involved model of pure
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strategies. In words, in terms of forecasting forecasts of the rivals, players do not care whether a fraction
of players chose one action and the rest chose another action, or whether every player chooses both actions
with certain probabilities that provide the same average action.

The remainder of the paper is as follows: in Section 2 we introduce games with a continuum of players
and an average variable that we call the state of the game, and following Jara-Moroni (2012) we define and
characterize the sets of (Point-)Rationalizable States; in Section 3 we claim and prove our main result and
we close with some remarks in Section 4.

2 Rationalizability in games with a continuum of players

Let I, the unit interval in R endowed with the Lebesgue measure λ, be the set of players. All the players
have the same set of available actions A a compact subset of Rn. A strategy profile is a measurable function
from I to A and the set of strategy profiles is denoted by AI . Let S be the set of all integrals of strategy
profiles S :=

{∫
I
a dλ|a ∈ AI

}
. Then S is the convex hull of A and so is also compact. The elements of

S are the aggregate states and S is the set of states. We denote the set of real-valued bounded continuous
functions defined on a space X by Cb(X). Let UA×S denote the topological space of Cb(A× S) endowed
with the sup norm topology. A game with a contiuum of players is a measurable function u : I → UA×S
that associates players with their payoff functions. A Nash Equilibrium is a strategy profile a∗ ∈ AI such
that λ-almost-everywhere in I:

u

(
i, a∗(i) ,

∫
I

a∗(i) di

)
≥ u

(
i, y,

∫
I

a∗(i) di

)
∀ y ∈ A.

This formulation is Rath’s (1992) extension of Schmeidler’s (1973) formulation of games with a continuum
of players. To denote games with a continuum of players that have an aggregate state as above, we will use
the notation u. We will denote then equivalently u(i) and u(i, · , · ). In this framework Rath (1992) shows
that for every game there exists a pure strategy Nash Equilibrium.

2.1 (Point-)Rationalizable States

An aggregate state is rationalizable if it is consistent with the assumptions of rationality and common
certainty of rationality. Following Bernheim (1984), Pearce (1984) and Guesnerie (1992), Jara-Moroni (2012)
has defined and characterized rationalizable states, as the result of the iterative elimination of states that
are not consequence of rational behavior of players. Given the state set S, all players must believe that each
player will only play an action that is a best response to some forecast over states. Actual action profiles
then must be selections of a best-response correspondence constructed, for each player, as the image through
their best-response mapping of the complete set of forecasts over S. Then, players should believe that the
only states that may rise as outcomes are elements of the subset of S that results from taking the integrals
of these selections. This same reasoning may be applied to this new set of states. The process may continue
ad infinitum.

Following the terminology of Bernheim we will distinguish between rationalizability and point-rationali-
zability. Rationalizability differs from point-rationalizability in that forecasts are probability distributions
whose supports are contained in the sets of outcomes; while for point-rationalizability, forecasts are points
or Dirac probability measures on these sets.

For each player i ∈ I consider the set-valued mapping ρ(i, · ) : ∆(S) ⇒ A that gives the actions that
maximize expected utility given a probability measure µ over the set of states S, µ ∈ ∆(S):

ρ(i, µ) := argmaxy∈AEµ [u(i, y, s)]

= argmaxy∈A

∫
S

u(i, y, s) dµ(s) .

If player i holds the forecast µ, then rational behavior implies that she will chose an action from the set
ρ(i, µ). If µ is an atomic measure concentrated on a point s, we will use the notation ρ̂(i, s). This is,
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ρ̂(i, s) := ρ(i, δs). It is seen directly that for a given action profile a, in the context of a game u, the best
response of a player i to a is given by ρ̂

(
i,
∫

a
)
.

Denoting by B(X) the family of Borel subsets of X, we define the mapping R : B(S) → B(S) that - to
each Borel set X ⊆ S - associates the set R(X) ⊆ S defined by:1

R(X) :=

∫
I

ρ(i,∆(X)) di, (2.1)

where ρ(i,∆(X)) is the image through the best-reply mapping of the set of probability measures with support
in X. If forecasts are constrained to ∆(X), each player i ∈ I will use an action in ρ(i,∆(X)) and so the
state of the game will be the integral of an action profile selected from i ⇒ ρ(i,∆(X)) and thus an element
of R(X).

We say that a set X ⊆ S satisfies the best-reply property if it is a subset of its image through R, this is:

X ⊆ R(X) (2.2)

A set that satisfies the best-reply property contains only states that result from optimal reactions to forecasts
constrained to this same set.

Definition 2.1. The set of Rationalizable States is the maximal subset X ⊆ S that satisfies:

X ⊆ R(X)

and we denote it RS .

The set-to-set mapping R allows us to rigorously define the process of iterative elimination of non-best-
reply states that characterizes the set of rationalziable states.

R0(S) := S and Rt+1(S) := R
(
Rt(S)

)
for t ≥ 0. (2.3)

R′S :=

∞⋂
t=0

Rt(S) (2.4)

Theorem 2.2 (Jara-Moroni (2012)). The set of Rationalizable States of a game u can be calculated as

RS = R′S

This same exercise can be developed to define and characterize Point-Rationalizable States. For this,
simply consider ρ̂ instead of ρ in (2.1). Thus, denoting by 2X the family of subsets of X we define the
mapping R̂ : 2S → 2S

R̂(X) :=

∫
I

ρ̂(i,X) di. (2.5)

The set R̂(X) gives the set of states that are obtained as a consequence of optimal behavior when forecasts
are deterministic and constrained to the set X. Since any Borel set X ⊆ S can be embedded into ∆(X), the
inclusion ρ̂(i,X) ⊆ ρ(i,∆(X)) holds and so we have that R̂(X) ⊆ R(X). The definition and characterization
of Point-rationalziable states are analogous to Definition 2.1 and Theorem 2.2.

1The integral of a correspondence F : I ⇒ Rn is calculated, following Aumann (1965), as the set of integrals of all the
integrable selections of F . This is,∫

I
F (i) di =

{∫
I
f(i) di : f is an integrable selection of F

}
where

∫
fdi :=

(∫
f1(i) di, . . . ,

∫
fn(i) di

)
.
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Definition 2.3. The set of Point-Rationalizable States, PS , is the maximal subset X ⊆ S that satisfies

X ⊆ R̂(X) . (2.6)

Theorem 2.4 (Jara-Moroni (2012)). The set of Point-Rationalizable States of a game u can be calculated
as

PS = P′S =

∞⋂
t=0

R̂
t
(S) (2.7)

3 Finite action set and mixed strategies

We are interested in games in which the set of actions is finite and we will consider mixed strategies. The
fundamental for our model will be a game u as defined in Section 2 where the set of actions (or pure
strategies) is A =

{
a1, . . . , an

}
, where ak is the kth unit vector of Rn. The set of mixed strategies, denoted

by M , is the set of probability measures over A and so is the unit simplex in Rn (which we denote by ∆). A
mixed strategy profile is a measurable function from I to M and the set of mixed strategy profiles is denoted
by M I . Let SM be the set of all integrals of mixed strategy profiles SM :=

{∫
I
m dλ|m ∈M I

}
. Then SM

is as well the simplex in Rn, as is the set of all integrals of action profiles. This is, the simplex in Rn stands
for the set of mixed strategies, the set of aggregate states due to pure strategies and the set of aggregate
states due to mixed strategies. Given u, for each player i ∈ I we calculate payoff associated to a profile of
mixed strategies with the function U(i, · ) : ∆×∆→ R as follows:

U(i,m(i) , s) :=

n∑
k=1

mk(i) · u
(
i, ak, s

)
; (3.1)

so that,

U

(
i,m(i) ,

∫
I

m dλ

)
=

n∑
k=1

mk(i) · u
(
i, ak,

∫
I

m dλ

)
, (3.2)

where mk(i) is the probability that player i gives to action k in her mixed strategy.2

Note that starting from u we have defined its mixed extension U which is a measurable function from
I to U∆×∆ and so is in its own terms a game with a continuum of players as defined in Section 2 (with
A = S = ∆). We may then consider four rationalizable sets, the two Rationalizable States sets associated to
pure strategies RS and PS ; and two new sets, the sets of (Point-)Rationalizable States associated to mixed
strategies, which we will denote by RMS and PMS .

Theorem 3.1. In a game with a continuum of players and finite set of actions the sets of (Point-)Rationaliza-
ble States associated to pure and mixed strategies are equal. Formally:

RS = RMS PS = PMS .

Proof. The proof proceeds by demonstrating that the process of elimination of states for both (Point-
)Rationalizable States sets (the one associated to mixed strategies and the one associated to pure strategies)
are the same.

We need to introduce some notation: we will denote with a superscript M the mathematical objects
related to the process associated to mixed strategies and without superscript the ones associated to pure
strategies (or actions). Thus, for instance R represents the process of elimination of states when considering
only actions and RM represents the process considering mixed strategies.

2Since the functions u(i) belong to UA×S the function U is well defined.
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It is clear that for any Borel set X ⊆ ∆, R(X) ⊆ RM (X), since pure strategies are as well mixed
strategies.

From (2.1) we see that for a Borel set X ⊆ ∆, RM (X) is the integral over players of the image through
the best-reply mapping of the set of probability measures with support in X (the set of general forecasts
constrained by X). For a given forecast µ ∈ ∆(X) the expected utility in mixed strategies is:

Eµ [U(i,m(i) , s)] = Eµ

[
n∑
k=1

mk(i) · u
(
i, ak, s

)]
(3.3)

=

n∑
k=1

mk(i) · Eµ
[
u
(
i, ak, s

)]
. (3.4)

So mixed strategies that maximize expected payoff (expectation that comes from the forecast) are those
that put positive probability only in the actions that maximize expected payoff with respect to the same
forecast. Thus, for a given forecast µ we can construct the set of maximizers in mixed strategies from the
set of maximizers in pure strategies as follows:

ρM (i, µ) = co {ρ(i, µ)} . (3.5)

Now take a state s ∈ RM (X). This means that s =
∫
I
m(i) di where m is a measurable selection of the set

valued mapping (s.v.m.) i ⇒ ρM (i,∆(X)). This implies that for every player i ∈ I there exists a forecast
µ(i) ∈ ∆(X) such that m(i) ∈ ρM (i, µ(i)). This is, m is a measurable function and is a selection from the
s.v.m. i ⇒ ρM (i, µ(i)). This immediately implies that the integral of i ⇒ ρM (i, µ(i)) is non-empty (since
s is an element of this set). From (3.5) we get that m is a measurable selection of i ⇒ co {ρ(i, µ(i))} and
so s ∈

∫
I

co {ρ(i, µ(i))} di. From Aumann (1965) we know that:3∫
I

co {ρ(i, µ(i))} di =

∫
I

ρ(i, µ(i)) di;

and so s ∈
∫
I
ρ(i, µ(i)) di. Evidently, ρ(i, µ(i)) ⊆ ρ(i,∆(X)) so:

s ∈
∫
I

ρ(i,∆(X)) di = R(X) .

We conclude that RM (X) ⊆ R(X).
Since for any Borel set X ⊆ S, RM (X) = R(X) we get that the two processes of elimination of states

coincide and so RS = RMS .

For the second equality, take s ∈ R̂
M

(X) and simply consider the subset X ⊆ ∆(X) instead of ∆(X) in

the previous reasoning to conclude that R̂
M

(X) ⊆ R̂(X).
�

The following example, taken from Jara-Moroni (2012), shows that the sets RS and PS may differ.

Example 1. Consider the game where

A =
{
a1, a2, a3

}
, S = ∆ =

{
(s1, s2, s3) ∈ R3

+|s1 + s2 + s3 = 1
}

and all the players have the same payoff function u(i) = u : A×∆→ R defined by:

u
(
a1, s

)
=


0 if s3 ≤ 1/3

18s3 − 6 if 1
3 < s3 <

1
2

3 if s3 ≥ 1/2

; u
(
a2, s

)
= 2 ; and u

(
a3, s

)
=


3 if s3 ≤ 1/2

12− 18s3 if 1
2 < s3 <

2
3

0 if s3 ≥ 2/3

.

3The integral of a s.v.m. t ⇒ F (t) and the integral of the s.v.m. t ⇒ co {F (t)} coincide.
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We see that both the original game u and its extension U are games with a continuum of players.
Clearly, the action a2 is never a best response to deterministic forecasts, since for any s ∈ ∆ either a1 or

a3 provide payoff equal to 3. Thus, ρ̂(∆) =
{
a1, a3

}
and so R̂(∆) = co

{
a1, a3

}
. Moreover ρ̂

(
co
{
a1, a3

})
={

a1, a3
}

, so R̂
2
(∆) = co

{
a1, a3

}
. We conclude that PS = co

{
a1, a3

}
.

However, if a forecast µ ∈ ∆(S) is such that µ({s ∈ ∆ : s3 = 0}) = µ({s ∈ ∆ : s3 = 1}) = 1/2 we have
that,

U(a, µ) =


1.5 if a = a1

2 if a = a2

1.5 if a = a3

and so ρ(µ) = a2, so RS = ∆.
In this example then, the rationalizable sets are well defined and differ.

4 Concluding remarks

We have seen that in the version of the model of games with a continuum of players due to Schmeidler
(1973) and Rath (1992) where payoff depends on the average of the actions of all the players, it is possible
to build the mixed extension of the a game with a continuum of players and finite (pure) strategy sets. This
construction is in its own right a game with a continuum of players.

Consequently the theory and properties of (Point-)Rationalizable States introduced and studied in Jara-
Moroni (2012) are applicable to these two settings. Taking advantage of the properties of integrals of set
valued mappings we have been able to prove that the sets of (Point-)Rationalizable States associated to
mixed and pure strategies are equal. We see then than in games with finite sets of actions, in terms of
rationalizability, it is irrelevant to consider mixed strategies, so a modeler that wishes to study expectational
coordination may simply consider pure strategies. This result is a contribution to the literature on purifi-
cation of equilibria (Khan et al., 1997, 2006; Balder, 2008). However, Example 1 shows that the choice of
forecasts, even in games with finite sets of actions, is not superfluous and may in general alter the conclusions
depending on wether the modeler is considering general or deterministic forecasts. Nevertheless, if the game
in consideration is affine in the state variable then the type of forecasts are superfluous (Jara-Moroni, 2012)
and so the modeler may well work with pure strategies and deterministic forecasts.

A question that remains unanswered is the comparison between the set of equilibrium states and the set of
(point-)rationalziable states. It is shown in Jara-Moroni (2012) that the convex hull of the set of equilibrium
states is contained in the rationalizable sets and this inclusion can be proper (illustrative examples may be
found in Rath (1994, 1995, 1998)). A natural question is whether one can provide conditions for these sets
to be identical. One may conjecture that in games with finite number of actions, if the set of equilibrium
states is contained in the set of actions, then the sets are identical. However, we may provide a simple game
with two actions and constant utility function i→ u(i, ·, ·) where this property does not hold. Nevertheless,
it is important for the conjecture to fail that at equilibrium, the equilibrium action was not the unique best
response. Thus, we believe that it is possible to prove that if in addition equilibria are strict (each player
has a unique best response), then the property follows. An interesting case to explore as well is that of Nice
Games with a continuum of players.
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