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Abstract

This paper uses a calibrated stochastic OLG model to address three ques-

tions about US savings and wealth accumulation: first, does an equilibrium

display buffer stock savings by agents? Second, is this equilibrium consistent

with savings behavior of US households? And finally, what level of precau-

tionary savings arises when general equilibrium effects are accounted for? We

find that given observed earnings risk, the rates of time preference that are

consistent with the equilibrium are very close to the interest rate, so no buffer

stock behavior is observed. Moreover, the equilibrium reproduces important

facts about savings behavior of US households. Finally, accounting for gen-

eral equilibrium effects lowers the size of precautionary wealth to about 35%

of aggregate wealth, or 30 to 50% less than partial equilibrium estimates.



1 Introduction

It is now understood that precautionary motives for accumulating wealth

play a key role in the consumption/savings decisions of households. At least

since the work of Skinner [1988], Hubbard and Judd [1987], and Summers and

Carroll [1987], precautionary savings behavior has been extensively studied,

primarily as a candidate solution to problems in the consumption literature,

such as the excess sensitivity puzzle (Zeldes [1989], Caballero [1991]), and the

failure of standard finite horizon models to explain the observed pattern of

consumption growth over the life cycle (Skinner [1988]). Alternatively, pre-

cautionary motives have been advanced to link the decline in the personal

savings rate over the last 20 years to the extension of social insurance pro-

grams such as Medicare and Social Security (Summers and Carroll [1987]).

This paper is concerned with a research agenda fostered by Skinner [1988],

Carroll and Samwick [1998, 1997], Hubbard et al. [1994] (HSZ), Huggett

[1996] and others. The objective is to study whether a model with real-

istic lifespans, income paths, and risk exposure can account for the sav-

ings/consumption behavior of US households. In this line of work, Hubbard

et al. [1994] showed that in a calibrated model where the interest rate is close

to the rate of time preference, agents would desire to accumulate levels of

wealth similar to those found in the data. Moreover, evidence was reported

that other model statistics such as the age-consumption profile, and the re-

sponse of consumption to innovations in income could also reproduce their
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data counterparts. In a companion paper (Hubbard et al. [1995]) these au-

thors focus on the importance of asset tested programs to explain the low

accumulation of assets by the lowest quintile of the wealth distribution.

The calibration of these models was criticized by Carroll and Samwick

(Carroll and Samwick [1998, 1997]), on the grounds that it produces a level

of sensitivity to changes in income risk so high that it was impossible to

reconcile with their empirical findings. Instead, they propose a calibration

where agents have very high levels of impatience, so that the rate of time

preference is well above of the interest rate. In such model, agents find it

optimal to achieve a target level of wealth over (expected) income, which

they keep until late in their life cycle. Carroll and Samwick report that this

model displays a sensitivity to changes in income risk more in line with their

empirical results.

One common finding of this literature is that wealth that is held for

precautionary motives accounts for at least 50% of total wealth. However,

these estimates are partial equilibrium in nature, as prices do not respond to

changes in aggregate wealth 1. As shown by Hubbard and Judd [1987] in a

model with longevity risk only, and by Aiyagari [1994] in the context of an

infinite horizon model, general equilibrium effects can be sizable and tend

to increase wealth holding, therefore reducing the estimated share of wealth

that is precautionary.

1An exception is Huggett [1996] who carries a general equilibrium analysis and reports
a lower estimate. However, his focus is on wealth distribution, so there is no discussion of
this result.
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This paper contributes to the literature by taking an alternative path:

imposing the discipline of general equilibrium, we compute the levels of dis-

count rates consistent with observed levels of interest rates, savings rates,

and income/longevity risk. We show that the resulting equilibrium produces

interest and discount rates that are very close to each other, so that agents

are not buffer stock savers. Moreover, the age specific saving behavior that

emerges is consistent with average asset accumulation by US households,

and displays levels of sensitivity to income risk in line with those reported

by Carroll and Samwick. Finally, we compute the level of precautionary sav-

ings that arise in this model, and show that properly accounting for general

equilibrium effects considerably lowers previous estimates.

This paper has four other sections. In section 2 the model is presented.

Section 3 discusses the calibration procedure. Section 4 presents the results,

and Section 5 concludes.

2 The model

We present a large scale OLG model in the tradition of İmrohoroğlu et al.

[1995], Huggett [1996] and Rios-Rull [1996]. In this model, a large number of

agents of size 1 live for a maximum of T periods, are endowed with a level of

assets a1 at the beginning of their life (t = 1) and face uncertainty regarding

labor earnings and lifespan. Each period, agents take the interest rate and

the realization for labor income as given and must allocate their earnings

between consumption and saving, subject to a borrowing constraint.
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Agents take prices as given and maximize a utility function of the form:

max
ct,at+1

E1

T∑
t=1

[
t∏

j=1

ηj]β
tu(ct)

s.t. at+1 + ct = (1 + r)at + wϕtlt + q

at+1 ≥ 0,

where lt, is a random variable with bounded support that represents a shock

to labor endowment, and ϕt is a nonstochastic variable that indexes labor

productivity for an agent of age t. Therefore, wϕt, is the unconditional mean

of labor earnings at age t, that can be thought of as the life cycle component

of earnings, and lt, is labor endowment of an agent at age t.

An agent of age t survives to t+ 1 with probability ηt. With probability

1−ηt, he dies and leaves bequests that are evenly distributed among all living

agents, each agent receives q in bequests every period. Survival probabilities

{ηt}Tt=1, in turn define the cohort shares {µt}Tt=1 by µt = (1 − ηt)µt−1 and∑T
t=1 µt = 1.

The household problem can be expressed in recursive form. Let Vt(a, l)

be the maximum value of the objective function for an agent of age t with a

level of asset holdings and labor endowment shock {a, l} . Then, Vt(a, l) is

given by:

Vt(a, l) = max
a′,c

{u(c) + βηtE[Vt+1(a
′, l′|l)]}

s.t. a′ + c = (1 + r)a+ wϕtl + q
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a′ ≥ 0 (P1),

where a′ is asset holdings for next period. Moreover, since an agent lives at

most for T periods, we have:

VT (a, l) = max
c

{u(c)}

s.t. c = (1 + r)a+ wϕtl + q

The solution to this problem are the optimal policy functions Ct(a, l) and

At(a, l), for t = 1, ..., T , that map the state {a, l} at age t to consumption at

age t and assets at the beginning of age t+ 1 respectively.

The representative firm chooses {L,K} to solve:

max
K,L

F (K,L)−RK − wL (P2).

To complete the description of the economy, we define the capital accumula-

tion technology in a standard way: Kt+1 = (1−δ)Kt+It, where I is aggregate

investment and δ is the depreciation rate.

We are interested in a steady state equilibrium where the aggregate capi-

tal stock is constant, and although there is a large amount of dynamics at the

individual level, the distribution of assets and other endogenous variables is

time invariant. Since a meaningful equilibrium concept needs to be expressed

in terms of these distributions, we proceed to define them.

Let (X,B,Ψt) be a probability space. If Z is the support for the stochastic

shock lt and asset holdings are restricted to lie in [0,∞), then an individual
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state x = {a, l} lies in the state space X = Z × [0,∞). Let B be the Borel

sets in X. Then, for each t from 1 to T a distribution Ψt can be defined such

that, for each B ∈ B,Ψt(B) is the probability that an agent of age t will be in

a state x ∈ B . Together with the stochastic process for l, the optimal policy

function At(a, l) defines a transition function P (B, t) = Prob(xt+1 ∈ B|xt)

that links current and future distributions. The function Ψt is then derived

recursively by:

Ψt(B) =
∫
X
P (B, t− 1)dΨt−1 B ∈ B.

Equilibrium Definition: A steady state equilibrium for this economy

is a collection of value functions Vt(.), policy functions Ct(.) and At(.), t =

1, ..., T ; prices for labor and capital services {w, r}; aggregate values for

{K,L}; a level of per capita bequests q; and distributions {Ψt, Pt} for t =

1, , T such that,

1. Households maximize utility: given q and prices {w, r}, the policy func-

tions Ct(.) and At(.) solve (P1) for all t.

2. Firms maximize profits:

FK = R = r + δ

FL = w.
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3. Markets clear:

(i)
∑

t µt

∫
(Ct + At)dΨt + q = (1− δ)K + F (K,L)

(ii)
∑

t µtϕt = L = 1

(iii)
∑

t µt

∫
AtdΨt = K

4. Cross section distributions are consistent with policy functions:

Ψt+1 =
∫
PtdΨt

5. All bequests are distributed:

q =
∑

t(1− ηt)
∫
AtdΨt

Aiyagari [1994] presents a characterization of this problem in the context

of an infinite horizon model: agents will overaccumulate assets, with respect

to a complete markets situation, as a way to partially insure themselves

against the possibility of being effectively borrowing constrained in the future.

The pattern of wealth accumulation is studied by Carroll [1999] in a life

cycle model, and Deaton [1991] in an infinite horizon economy. An important

result is that, when the growth rate of income is sufficiently high for given

levels of risk {ρ, σ2
ϵ}, prudence { θu

′′′
c

u
′′
c
}, and patience {β}, agents optimally

choose to achieve a target level of wealth over earnings, or “buffer stock” of

assets 2.

2The condition in discrete time can be approximated by r−γ
θ +

(θ+1)σ2
ϵ

2 < g , where g
is the growth rate of income, γ is the rate of time preference, and θ is the coefficient of
relative risk aversion.
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Checking whether this condition is empirically plausible is difficult given

the unobservable nature of the discount rate γ = 1−β
β
. The next section

presents a calibration procedure where β is determined using the general

equilibrium nature of the model.

3 Calibration.

The calibration exercise is designed so that the stochastic model economy

displays relevant features of the US economy. In particular, the discount

factor β is left as a free parameter that takes on the value needed for the

model economy to display target levels of the interest rate and the savings

rate.

To calibrate the model we need to define functional forms and parameters.

The functional forms used are as follows:

• A Cobb-Douglas production function is used for all exercises:

F (K,L) = AKαL1−α

.

• Felicity functions are of the CRRA form:

u(c) =
c1−θ − 1

1− θ

• The stochastic process for the labor endowment is AR(1):
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ln(lt) = ρ ln(lt−1) + ϵt ϵt ∼ N(0, σ2
ϵ ), i.i.d.

The parameter values are shown in table 1. For the earnings process we adopt

the results for households with 12-15 years of education reported by Hubbard

et al. [1994](table A.4) using PSID data. Figure 1 shows the unconditional

means. The stochastic process associated implies values of .946 for ρ , and

.025 for σ2
ϵ . These values are roughly consistent with findings by MaCurdy

[1982], as explained below, but imply a variance in the change of earnings

lower than the values in Abowd and Card [1989], who use the same dataset.

The baseline economy is also calibrated so as to display the following

ratios: an interest rate of 4% per annum, in line with the calculations reported

by Kotlikoff and Summers [1981], and a savings rate of 19%, chosen to match

the rate of investment over GDP of the US economy in the period 1980-1989.

These ratios imply a depreciation rate of .045 per year.

A comment of the calibration choices is in order. Evidence from longitu-

dinal studies of earnings and labor supply suggest that the process for (log)

earnings can best be modelled as a near unit root process with autoregressive

errors of order 2 (MaCurdy [1982]. This leads Carroll and Samwick [1997] to

calibrate their model using a unit root process with a variance of innovations

equal to 0.01.

As suggested by Skinner [1988], we can summarize the risk to lifetime

resources implied by a AR(l) stochastic process with the statistic πt =

σ2
ϵ [
∑T−t

j=1
ϕt+j−1ρ

j

(1+r)j
]2, where ϕt indexes labor earnings at each age. We com-

pute this statistic (the average over all ages) for our baseline parameters,
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and compare it with those for Carroll and Samwick and MaCurdy, properly

accounting for the ARMA specification. We find that the AR(l) process

chosen here implies a similar level of risk to lifetime resources (2.54) than

the ARMA(1, 2) proposed by MaCurdy (2.81) and the specification used by

Carroll and Samwick (3.13). Moreover, increasing the variance of innovations

from our baseline of .025 to .031 would be enough to produce a value of 3.13

for this statistic.

With respect to the interest and savings rates, since the empirical equiv-

alent of the model interest rate is a risk-free rate, we are tempted to use

a number in the order of 1/2% per annum, consistent with the return on

Treasury Bonds. On the other hand this rate is also the marginal product

of capital, so the historical return on stocks, of the order of 7% annually

but more volatile, may also be appropriate. We therefore experiment with

different values of r.

The problem of interpreting the savings rate lies in the fact that house-

holds are not the only source of savings in the US economy. In fact, from

1980 to 1989 the personal savings rate averaged 6.7% of GDP, businesses

contributed with 12.6 percentage points to the average savings rate, and the

government dissaved .8% of GDP. Of these aggregates, businesses and gov-

ernment reported as capital consumption allowances 10.2 and 2.3% of GDP

respectively. Aggregate gross saving was then in average 18.8% of GDP in

this period, close to our benchmark, but the net saving rate was only 5.9%

(ERP [1999]).
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A related issue is that, since we focus on a steady state equilibrium,

savings net of capital consumption (depreciation) allowances is zero in the

model. Since introducing growth considerations is beyond the scope of this

paper, we check the robustness of our results to the choice of savings rate by

doing some sensitivity analysis with values of S/Y from 15% to 24%.

Finally, note that Table1 show the levels of K/Y implied by each choice

of {r, S/Y }. These levels are roughly consistent with the ratios of As-

sets/Income reported by Hubbard et al. [1994], but are in general higher than

the capital-output ratios calculated for the US economy. Note that once the

interest rate and savings rates are fixed, the depreciation rate and the capital

output ratio are defined by the conditions s = δK/Y and r = FK − δ. Table

7, with the capital output ratios that result from selected {r, S/Y } pairs,

show that a lower K/Y is associated with higher levels of saving rates and

interest rates. While decreasing K/Y to 3 increases the estimated share of

wealth that is precautionary (see table 3), it remains that this variation is

small compared to the differences in precautionary wealth associated with

different risk aversion coefficients.

4 Results.

In this section, we begin by showing how the calibrated model reproduces im-

portant facts about wealth accumulation by US households. We then exam-

ine the implications of these results for the debate on whether US households

are buffer stock savers or not. Finally, we compute the levels of precautionary
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wealth that emerge in this model and decompose it in partial and general

equilibrium effects.

We evaluate the ability of the model to mimic US data along three dimen-

sions: the age/wealth profile, the age-specific average propensities to save,

and the sensitivity of wealth holdings with respect to income risk.

The paper focuses on age-specific aggregate statistics, rather than dis-

tributions, because we believe that most of the intra cohort heterogeneity

cannot be explained by different histories of shocks that are mean-reverting.

It is known that this model compresses the income distribution, generating

too few very rich (see e.g. Carroll [2000]) and too few very poor agents. Real-

istic models of wealth distribution imply types of heterogeneity in agents that

are absent here: in investment opportunities (for instance Quadrini [2000]),

in time discounting (e.g. Krusell and Smith [1998]), or in productivity (e.g.

Hubbard et al. [1994]. Considering these types of heterogeneity is beyond

the scope of this work.

Figure 2 shows the predicted average profile of wealth holdings at each

age (in thousands of 1984 dollars), compared to data reported by Radner

[1989] using the 1984 Survey of Income and Program Participation (SIPP)

database. The model generated data is normalized so that average income

equals 1984 per capita GDP at current prices.

The fit is extremely good given that the model was calibrated to savings

and interest rates of the period only. The feature that deserves attention is

the similarity of the shapes of the two curves, more than the fact that they
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overlap. In fact, since SIPP data comprises only private wealth, while the

model’s data is on aggregate wealth, and their measurement units (house-

holds in SIPP versus ‘workers’ in model) differ, there is little reason why they

should overlap. The similarities however suggest that, on average, the model

contains the right elements that shape life cycle savings behavior.

Figures3 and 4 present the age-wealth profiles for alternative parameteri-

zations of the model, compared to Radner’s data. Clearly, very high levels of

aggregate wealth can be attained by this model with the appropriate discount

rate.

We now turn to examine two direct measures of age-specific saving be-

havior. Figure 5 compares the life cycle profiles of average propensities to

save (APS) generated by the model with their data counterparts, constructed

by Gokhale et al. [1996] using the Consumer Expenditure Survey (CEX) for

various years. The two series correspond to different definitions of disposable

income. Conventional disposable income is the sum of labor income, capital

income, and pension income minus net taxes, while in the alternative defi-

nition social security contributions are classified as loans (so that they are

considered savings), and social security benefits are classified as the repay-

ment of principal (not part of disposable income) plus interest on past social

security loans.

It is important to note that, once again, it is the shape of the APS curve

and not the level that matters the most. Data on household savings is data

on net savings, since businesses make most of the allowances for consumption
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of capital. In a growing economy this measure of savings should be positive

in the aggregate. In our model, since we are focusing on a Steady State

equilibrium, net savings are zero.

The model prediction follows more closely the APS observed under the al-

ternative definition, but it tends to overpredict savings rates at the beginning

(until around age 32) of the life cycle. Overall, it displays the characteristic

hump shape present in the data, with a ‘plateau’ from ages 35 to 60, and a

drastic decrease after age 60.

Figure 6 allows an examination of the sensitivity of wealth holdings with

respect to uncertainty, measured in this case by the conditional variance of

earnings σ2
ϵ . The wealth/income profile for the baseline model is shown

along with the average age-wealth profile of an agent facing the same prices

as in the baseline model but with half of the variance (1.2% versus 2.4%).

The results for two alternative parameterizations are shown in figures 7 and

8.

These simulated changes in the levels of wealth holdings are consistent

with those predicted by the regression coefficients in Carroll and Samwick

[1997]. Using differences in occupation specific income risk, Carroll and

Samwick regress various measures of log net worth on the variance of per-

manent and transitory income shocks, permanent income, and life-cycle vari-

ables (age, married, etc). Using the approximation [log(Wl)log(W2)]/[var1−

var2] suggested by the authors, where W1,W2, and var1, var2 are wealth

holdings and income variances for the baseline and alternative paths respec-
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tively, we can approximate what the regression coefficients would be in the

models. The results, presented in Table 2, indicate that reasonable parame-

terizations of the model can reproduce these coefficients without difficulty.

These levels of risk sensitivity are similar to those reported by Carroll and

Samwick [1997], even though the levels of discount rates and other parameters

are very close to those of Hubbard et al. [1994]. In fact, figures 6, 7, and 8

show that the ratio of wealth/income chosen by agents, increases from the

beginning of the life cycle, instead of remaining constant for the first part

of it -after a target level is reached- as would be the case in a buffer stock

model.

Using the discount factors consistent with Steady State equilibria in the

stochastic economies, we can predict how large would aggregate wealth be

in a similar economy with no income uncertainty, and no income or lifespan

uncertainty. We do so by using a certainty version of the program, described

in the appendix.

The results are shown in Table 3. It is worth noting that the levels

of precautionary wealth are significantly lower than those found in similar

models. Table 4 shows that the difference can be entirely explained by not

accounting for general equilibrium effects. In what follows, we examine this

issue more closely.

Two exercises are carried out. First, we calibrate our model to interest

rates, discount rates, and stochastic paths similar to those in Skinner [1988]

and Hubbard et al. [1994]. Rather than attempting a detailed replication,
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we want to find if given these rough similarities, our model generates similar

levels of precautionary wealth. Table 5 shows the results for two different

levels of aggregate earnings, and confirms that in partial equilibrium this

type of model generates high levels of precautionary wealth.

Next, we compare the levels of precautionary wealth generated by these

models in general vs. partial equilibrium (Table 6). Given the parameters

for the stochastic process and the interest rate chosen in the original papers,

we find the discount factor consistent with a predetermined savings rate

(S/Y=.19 for Skinner and .24 for Hubbard et al.). Next, we find the level

of aggregate wealth in a deterministic economy where agents face the same

factor prices (columns labelled P.E.), and finally we allow prices to change

and compute the general equilibrium effects (columns labelled G.E.).

It is clear that the partial vs. general equilibrium nature of the exercise

matters, as was already noted in Hubbard and Judd [1987] and Aiyagari

[1994]. In our examples, a partial equilibrium estimation of the size of pre-

cautionary wealth overstates it by 20 to 50%, consistent with the differences

between the findings in this paper and those reported by Skinner [1988] and

Hubbard et al. [1994].

5 Conclusions.

An important problem in the study of life cycle savings behavior is whether

it can be characterized by a model of buffer stock versus ‘life cycle’ savings.

This paper examines the issue using the discipline of general equilibrium to
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sort among alternative models.

We find that a model calibrated to the levels of aggregate savings, interest

rates, and risk exposure found in the data displays life cycle patterns of asset

accumulation and overall sensitivity to risk in line with empirical evidence.

This model does not predict buffer stock behavior. Rather, agents find it

optimal to increase their wealth/income ratios until shortly before retirement.

At the same time, the equilibrium allocation implied a level of precau-

tionary wealth around 35% of total wealth, far below comparable estimates

in the literature. The differences can clearly be traced to the partial/general

equilibrium nature of the exercises.
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A Numerical methods.

To simulate the stochastic OLG economy we use a standard dynamic pro-

gramming method. To use this method we discretize the state space. In par-

ticular, a seven-state discrete approximation to the labor endowment process

is used. This approximation is done with the method described in Tauchen

[1986] to find a markov transition matrix for continuous stochastic processes.

A.1 Solution Method for the Stochastic OLG Model

The stochastic OLG model is solved using a variation of the İmrohoroğlu

et al. [1995] algorithm to compute the policy functions. Then a Monte Carlo

simulation is performed to compute some of the statistics. The algorithm to

compute the policy functions can be summarized as follows,

1. Make an initial guess for the discount factor β and the level of bequests

q0. For β define b = [b1, b2] (with b1 < b2), and let β = (b1 + b2)/2.
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2. Starting from age J , and given prices consistent with the calibration,

compute the value functions and associated policy functions that solve

(P1) by a single backward recursion.

3. Define the distribution of assets and shocks for the first cohort j =

1), and using the policy functions and the transition matrix for the

shock, compute recursively the distribution of assets and shocks for

ages 2, 3...J .

4. Using the distribution of assets for all cohorts, calculate the implied

levels of aggregate capital and bequests K1, and q1.

5. Compare K1 with the level implied by the calibration K∗. If conver-

gence fails, adjust bequests with q0 = q1,and β by letting b1 = β if

K1 < K∗, and b2 = β if K1 > K∗.

For both solution methods the grid size for assets is set to 5 -10% of aver-

age asset holdings, and the convergence criterion is set to .003. Convergence

occurs generally in 7-9 iterations. Using the policy functions, we then simu-

late paths for 10.000 agents and compute the statistics. The original version

of this algorithm is discussed in İmrohoroğlu et al. [1999].

A.2 Solution Method for the Deterministic OLGModel

We solve the deterministic version of the OLG model by a method presented

in Rios-Rull [1999]. It is a ’shooting’ method that uses the fact that the
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Euler equation can be expressed as:

at = {1 + (1 + r)(β(1 + r))−1/θ

1 + r
}at+1 + {−(β(1 + r))−1/θ

1 + r
}at+2

+{(wt+1 + q)(β(1 + r))−1/θ − (wt + q)

1 + r
}

1. Set technology and preference parameters, {a1 = a, α, β, θ, δ} and guess

levels of aggregate capital K0 and per capita bequests q0.

2. Using K0, and given the production function F (K,L) = AKαL1−α,

find prices {r, w}.

3. Using the fact that at+1 = 0, guess a value for aT , and compute {at}Tt=1

backwards using the Euler equation.

4. Check whether a1 = a, otherwise go back to 3 and modify guess for aT .

5. Calculate aggregate capitalK1 and per capita bequests q1 using {at}Tt=1.

If convergence fails, set q0 = q and K0 = K1, and go back to 1.
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Figure 1: Income Profile (Hubbard et al. [1994], 12-15 years of education)
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Figure 2: Age-Wealth Profile: Baseline Model
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Figure 3: Age-Wealth Profile: Models 2 to 4
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Figure 4: Age-Wealth Profile: Models 5 to 7

Table 1: Calibration

Model Calibration Choices Implied Parameters Stochastic Process

S/Y Interest R. θ β δ K/Y ρ σ2
ϵ

Baseline 0.19 0.04 3 0.9815 0.0447 4.25 0.946 2.5%
Model 2 0.15 0.04 3 0.9983 0.0286 5.25 0.946 2.5%
Model 3 0.24 0.04 3 0.9556 0.08 3 0.946 2.5%
Model 4 0.19 0.03 3 1.011 0.0335 5.67 0.946 2.5%
Model 5 0.19 0.05 3 0.959 0.0559 3.4 0.946 2.5%
Model 6 0.19 0.04 5 0.9729 0.0447 4.25 0.946 2.5%
Model 7 0.19 0.04 1 0.9763 0.0447 4.25 0.946 2.5%
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Figure 5: Average Propensities to Save

Table 2: Carroll-Samwick estimates for sensitivity of wealth holdings with
respect to income risk

Model Age<50 Age 1-82
C-S:Per. Var. 12.09 13.27
C-S:Tr. Var. 7.11 6.6
Baseline 23.76 18.69
Model 2 21.76 14.88
Model 6 8.61 3.99
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Figure 6: Wealth/Income Profile: Baseline Model
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Figure 7: Wealth/Income Profile: Model 2
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Figure 8: Wealth/Income Profile: Model 6
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Figure 9: Age-Wealth Profile: Stochastic and Deterministic Economies
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Table 3: General equilibrium estimates of precautionary wealth

Model Calibration Precautionary wealth (%)
S/Y Interest R. θ Lifespan All

Uncertain Certain
Baseline 0.19 0.04 3 27.33 30.09
Model 2 0.15 0.04 3 23.42 26.75
Model 3 0.24 0.04 3 31.94 34.08
Model 4 0.19 0.03 3 22.38 25.63
Model 5 0.19 0.05 3 29.63 32.07
Model 6 0.19 0.04 5 49.63 50.71
Model 7 0.19 0.04 1 6.69 11.81

Table 4: Partial and general equilibrium estimates of precautionary wealth
(%)

Model Partial Eq. (1) General Eq. (2) 100× ((1)− (2))/(2)
Baseline 44.92 30.09 49.29
Model 2 33.28 26.75 24.42
Model 3 76.03 34.08 123.11
Model 4 30.33 25.63 18.33
Model 5 60.36 32.07 88.25
Model 6 59.22 50.71 16.79
Model 7 39.34 11.81 233.19

Table 5: Reproducing results: % of wealth that is precautionary

Model Lifespan All
Uncertain Certain

HSZ 1 68.29 71.93
HSZ 2 67.17 70.97

Skinner 1 47.86 50.87
Skinner 2 47.04 50.13
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Table 6: Partial vs. general equilibrium effects

Model % prec. % Prec. 100 ×
((1) −
(2))/(2)

% prec. % Prec. 100 ×
((3) −
(4))/(4)

P.E. (1) G.E. (2) P.E. (3) G.E. (4)
HSZ 26.63 22.38 19 30.33 25.64 18.32

Skinner 41.62 27.63 50.67 44.6 31.06 43.59

Table 7: Selected Capital Output Ratios

Interest Rate
Saving Rate .03 .04 .05 .06

.16 6.7 5 4 3.3

.18 6 4.5 3.6 3

.20 5.3 4 3.2 2.7

.22 4.7 3.5 2.8 2.3

.24 4 3 2.4 2
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